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with the Matlab finite elements solver

Roland Ernst*, Philippe Grosse, Laurent Philippe

Laboratoire EPM-Madylam, 1340, rue de la Piscine, Domaine Universitaire, 38402-Saint-Martin-d'Héres, France
Département Optronique, Leti-CEA, 17, rue des Martyrs, 38054 Grenoble cedex 9, France

(Received 15 May 1998, accepted 26 October 1998)

Abstract — The simple SiC crystals inductive elaboration process is useful for specific devices working in electronic and
optoelectronic areas. The SiC powder material is placed at the bottom of a graphite crucible and is inductively heated for
out-gassing at about 1 600 °C in a controlled atmosphere. The SiC vapour is then transported to a condensation area on the top
of the crucible where it condenses on a seed, forming a single crystal. The optimisation of this type of process requires numerical
modelling. In this paper, a new and original electromagnetic-thermal coupling modelling tool based on the Matlab two-dimensional
finite elements solver is presented. The electromagnetic model based on an ‘inductor voltage imposed’ equation gives the real
inductor current density distribution, the impedance and coupling efficiency of the inductive system and the volume power density
distribution in the induced charges such as the graphite crucible and holder and the surrounding insulating foam. The coupling
with the thermal model is then achieved by taking this power density as the heat source on the right hand side in the energy
equation. The temperature distribution issues from this coupling. The electrical and thermal results are in good agreement with
measured values. This work shows that the Matlab mathematical and graphical efficiency associated with its finite elements solver
builds an interesting tool for electrical and thermal design and optimisation of middle or high frequency inductive industrial
processes. © Elsevier, Paris.

induction system / crystal growth / elaboration process / finite elements solver / electromagnetic-thermal coupling

Résumé — Un exemple de couplage électromagnétique-thermique résolu sur un systéme a induction haute fréquence a
laide du solveur d’éléments finis de Matlab est présenté. Le procédé d'élaboration par induction de monocristaux de SiC est
utilisé pour certains équipements spécifiques dans le domaine de I'électronique et de P'optoélectronique. La poudre de SiC est
disposée au fond d’un creuset en graphite et est chauffée par induction a une température de 'ordre de 1 600 °C en atmosphére
contrélée pour la phase de dégazage. Les vapeurs de SiC sont ensuite transportées vers une zone de condensation en partie
supérieure du creuset ol elles se condensent sur un germe, en formant un monocristal. L'optimisation de ce type de procédé
requiert une phase de modélisation numérique. Dans cet article, un nouvel outil original de modélisation numérique du couplage
électromagnétique-thermique basé sur l'utilisation du solveur d’'éléments finis bidimensionnel de Matlab est présenté. Le modéle
électromagnétique basé sur une équation en «tension d'inducteur imposée» donne la distribution réelle de la densité de courant,
limpédance et le rendement de couplage du systéme a induction, ainsi que la distribution de la puissance volumique dans les
charges induites, comme le creuset en graphite, le support en graphite et le feutre de graphite isolant entourant 'ensemble. Le
couplage avec le modéle thermique est ensuite obtenu en considérant la puissance volumigque comme la source de chaleur dans le
second membre de I'équation de I'énergie. La distribution de température est issue de ce couplage. Les résultats des modélisations
électromagnétique et thermique sont en bon accord avec les mesures. Ce travail montre que I'efficacité mathématique et graphique
de Matlab, associée avec son solveur d’éléments finis, constitue un outil intéressant d’aide a la conception et a I'optimisation de
procédés inductifs industriels moyenne et haute fréquence. © Elsevier, Paris.

systéme a induction / croissance cristalline / procédés d’élaboration / solveur d’éléments finis / couplage électromagnétique-
thermigue

Nomenclature A vector potential ............. ... ..., Wb-m~!
a coeflicient of the Matlab generic equa- B magnetic induction.................. T
tion c coefficient of the Matlab generic equa-
tion
* Roland.Ernst@polycnrs-gre.fr C capacity connected to the inductor ... F
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Ds,Dg,D7,Dg,D10 difference between mean
current Inean and each turn current ..
E electric field ........................

f coefficient of the Matlab generic equa-

tion

h convection coefficient ................
i complex square root of —1
I5,16,17,Ig,I1p current in each inductor turn
7 current density......................
k thermal conductivity ................
L inductance .........................
n unity vector normal to the boundary

r radial co-ordinate of the cylindrical co-

ordinates system ....................
R electrical resistance..................

relax relaxation coefficient for currents equi-
libration calculation

t time ... o
T temperature . .......................
U unknown of the Matlab generic equa-
tion
U current turn voltage.................
Us,Us,Uz,Us,U1o voltage of each inductor
turn ...
v electric scalar potential
T z-co-ordinate of the Cartesian co-
ordinates system ....................
T; z-co-ordinate of the power density
calculation grid nodes ...............
y y-co-ordinate of the Cartesian co-
ordinates system....................
Yi y-co-ordinate of the power density
calculation grid nodes ...............
z axial co-ordinate of the cylindrical and

Cartesian co-ordinates system........
Zs, Ze, 27, Zs, Z1p impedance of each induc-
torturn........... ... .o i,

Subscripts

Ap  orthoradial component of vector poten-
tlal ..o

A;  complex conjugate of Ag ............
Ey orthoradial component of electric field

VECEOT . oo
fr working frequency...................
I, anode current........... ... .. ...,
I; inductor current for measurements. ...
Imean mean value of the inductor turn cur-

7o orthoradial component of current den-

Sy
ks thermal graphite foam conductivity. ..
kg thermal graphite conductivity........
Tamb ambient temperature................

Trer reference temperature for radiative
losses

U total inductor voltage ...............
Va anode voltage.......................
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Wb-m~?
Wb-m~!

Vom~!
Hz

-

Am—2
Wm~—1.K-!
Wm—1.K-1

Voec  inductor voltage .................... Vv
Ta,T,Tc,Tp temperature at points A, B,
D K

Greek symbols
€ emissivity
) magnetic permeability............... Hm™!
g angular co-ordinate of the cylindrical

co-ordinates system ................. rd
p electrical resistivity.................. O-m
Pt graphite foam electrical resistivity .. .. Om
Pe  graphite electrical resistivity ......... Qm
o electrical conductivity ............... Q 'm-!
Ost Stefan-Boltzmann constant .......... W-an~2.K—4
w angular frequency .............. ... rd-s~1
P volumic power density............... W-m—3

1. INTRODUCTION

The elaboration of single crystals of SiC is useful for
some specific devices in electronic and optoelectronic
areas. The proper working of these devices requires
good crystal quality. Many efforts have been made
in recent years to improve this quality by developing
special elaboration processes [1-4].

The elaboration process concerned in this paper is
based on the heating by induction of the SiC powder
material in a sealed furnace at a temperature higher
than 1800 K and a pressure lower than 5-10° Pa. The
SiC which is placed at the bottom of a graphite container
is then sublimated in an inert gas and transported
onto the upper colder face where its condensation is
initiated on a seed placed in a precise spot. Thus it is
possible to obtain a single crystal. The above-mentioned
temperature of 1800 K is related to the out-gassing
phase which is considered in this paper.

The different experiments which have been done
show that the quality of the crystal depends on many
parameters which must be taken into account in such
a process. From a ‘microscopic’ point of view, when for
instance analysing the crystal growth, phenomena such
as physical vapour transport and chemical reactions
must be studied. But from a ‘macroscopic’ point of view,
for instance for the global design of the furnace, these
phenomena can be simplified and only electromagnetic
and thermal aspects have to be studied, which is the
case in this paper.

The work presented in this paper corresponds to this
‘macroscopic’ point of view: its purpose is the use of the
Matlab finite elements solver for solving the coupling
of electromagnetism and heat transfer in the furnace.
This electromagnetic-thermal modelling is specifically
useful for the electrical part of the design of this furnace
and also gives interesting data about the temperature
gradient in the furnace which is required in order to
obtain a correct sublimation and condensation of the
SiC. Thus it gives the guidelines for a proper global
design of such a process.
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Many publications have been written concerning the
finite elements method, about both the theory [5, 6] and
its applications for electromagnetic modelling [7] and
clectromagnetic-thermal coupling [8]. Thus the finite
elements method will not be presented again here. But
with the presentation of the electromagnetic-thermal
steady state model, the main original advantages of
using the Matlab environment and its included finite
clements solver (Partial Differential Equations Toolbox)
will be shown. It must be clearly noted that the aim of
this work is not to optimise the finite elements methods
but to use the Matlab finite elements solver as a help
for studying the SiC crystal growth process from a
electromagnetic and thermal point of view. The main
steps of this modelling process with the corresponding
original points may be described as follows: first,
the electromagnetic equation whose unknown is the
orthoradial component of the vector potential at each
point, is solved including a right hand side source term
which is related to the inductor voltage imposed by
the generator. This allows the real inductor current
density distribution to be determined in each turn and
also the distribution of the induced current density
in the different induced materials. This solving mode
shows clearly the proximity effects between the turns
themselves and between the turns and the charges
implying a non regular distribution of the inductor
current density in each turn. By integration of this
current density in each turn, the inductor current is
obtained, giving the complex impedance of the system,
L.e. its resistance and its reactance which are useful for
the electrical aspects. Then the induced power density
issuing from the current density is determined at each
mesh point of the induced pieces. This power density is
then extrapolated for each node of the thermal mesh and
becomes the source term of the thermal equation which
is also solved by finite elements. Finally the temperature
repartition in the concerned materials is obtained. The
boundary conditions involving convection and radiation
losses or imposed temperature are fixed by generalised
Neuman or Dirichlet conditions. In the electromagnetic
equation the resistivity of the materials is constant
and equal to its value corresponding to the estimated
mean temperature. In the thermal equation, the thermal
conductivity is dependent on the temperature. The
electrical and thermal results issuing from this model
are compared with experimental measures made on
the real process which is in a development stage.
The different steps of this electromagnetic-thermal
modelling preceded by a presentation of the process
and the corresponding experimental measurements are
presented in the following parts of this paper.

2. PRESENTATION OF THE PROCESS

The main part of the process is sketched in figure 1.
The silicon carbide (SiC) powder which must be
heated and sublimated is placed at the bottom of a

water cooled

/ quartz tube

insulating graphite

point A foam
inductor
5 condensation area
| graphite crucible
SR SiC powder
point B

graphite holder

Figure 1. Diagram of the process.

graphite crucible whose top includes a SiC seed on a
condensation area on which a single crystal grows by
condensation of the transported vapour. This crucible
is surrounded by a thermal insulating graphite foam
which is fitted with holes at the top and the bottom,
thus allowing pyrometric measurements. An additional
graphite holder is set under the foam.

A water-cooled double jacket quartz tube is set
around the crucible and the insulating foam so that,
thanks to two top and bottom flanges, the heating
and sublimation processes are achieved in an argon
controlled atmosphere.

A heating inductor is placed around the quartz tube.
This water-cooled five turn copper inductor is connected
to a capacity battery forming a parallel oscillating
circuit which is connected to a 50 kW high frequency
triode generator with a 114 kHz working frequency.

In order to obtain a single crystal growth by
condensation of the SiC vapours on the seed placed
on the top of the graphite crucible, the estimated
temperature in the corresponding area is about 1600
to 1800 °C. This shows one of the major points of the
numerical model: after validation of this model by the
only two external measured temperatures at points A
and B of figure 1, it is then possible to know, thanks to
this theoretical modelling, the temperature inside the
graphite crucible where any experimental measurement
is difficult to obtain.

3. MEASUREMENTS RESULTS
ON THE INSTALLATION

In order to validate the electromagnetic-thermal
modelling of the furnace, some electrical and thermal
measurements were made on the device.
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The simplified electrical sketch of the inductor
connection to the triode generator is given in figure 2.
The working frequency is 114 kHz. The inductor is
connected in parallel with a set of five 3 uF capacitors
connected in series and forming a capacitive potential
divider, the generator being connected at the ends
of three of these capacitors. This assumes a correct
impedance adaptation. The whole capacity value of the
five series capacitors connected to the inductor including
the furnace is C = 0.6 UF. These capacitors form a self-
oscillating circuit with the inductor.

induced charge

|

OO0 O
TS0 0 000

generator

N\

HHHAHH

N

total capacity :
C=0.6pF

inductor

Figure 2. Induction system connection to the generator.

First, after disconnecting the generator, the capacity
C is connected to an impedance measurement device
based on a self-resonant capacity discharge method [9].
These impedance measurements without the furnace
inside the inductor (inductor alone) and with the
furnace inside the inductor (inductor+ furnace) are
outlined in table 1.

TABLE |
Measured inductance, resistance, and quality factor
in the installation.

Frequency | Inductance | Resistance | Quality
factor
Inductor
alone 103 kHz | 3.95 pH 30 mQ 88
Inductor +
furnace 114 kHz 3.2 uH 109 mQ) 21

The resistance measured without and with the
furnace gives the coupling efficiency of the furnace
which is about 64 %.

Then the triode generator is connected to the
oscillating circuit formed by the capacitors and the
inductor with the furnace inside it, and, for the anode
voltage V. set to 2 kV, the corresponding anode current
I.. inductor voltage V.. and inductor current I; are
measured, and are given in table II.
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Finally, for several values of the anode voltage, the
temperatures Ta and Tg at the top and the bottom of
the crucible (points A and B in figure 1) are measured
by pyrometer through the holes in the graphite foam.
The measured values are given in table II1

TABLE Il
Measured anode DC voltage and current and inductor AC
voltage and current in the installation.

Anode Anode Inductor Inductor
voltage current voltage current
Va -Ia Voc Ii
2 kV 2 A 353 Vims 152 Arms
TABLE 1ii
Measured temperature of upper and lower points A and B
for different anode voltages and currents.
Anode Anode Upper Lower
voltage current temperature temperature
Vi (kV) I (A) Ta (°C) Ts (°C)
2 2 1700 1668
2.4 2.5 2 000 1910
3 3.2 2250 2103

These measured electrical and thermal values are
used for the validation of the electromagnetic-thermal
model. The accuracy of these measurements is estimated
to about 5 %.

4. THE ELECTROMAGNETIC MODEL

4.1. Properties of the materials

The resistivities of the graphite crucible and holder,
and of the graphite foam are assumed to be constant
and equal to the value corresponding to the estimated
mean temperature of the materials, meaning 1 500 °C
for the crucible and 1000 °C for the foam. According
to the literature [10], the values of p; = 1.538-107°Q-m
for the graphite crucible and holder resistivity and of
pe = 2.3-1073Q-m for the graphite foam resistivity are
used.

4.2. The electromagnetic equation

As the problem is axisymmetric, a cylindrical co-
ordinates system (r,4,2) is used. The electromagnetic
equation is derived from the Maxwell equations with the
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following unknowns, which are the complex amplitudes
(of the corresponding sinusoidal time-dependant fields):

~ B: magnetic induction vector
— 7 current density
- E: electric field
— . .
— A: magnetic vector potential
— V: electric scalar potential.
All these unknowns (except for V) do not depend on

the 6 co-ordinate (3/06 = 0). B has two components

along r and z, and 5, E and A have only an
orthoradial component, respectively called jo, Fs and
Ag. The scalar potential V' only varies linearly with 6
for the inductor turns with a corresponding constant
orthoradial component of the potential gradient gradV
equal to U/(2rr) where U is the turn voltage (issued
from the generator) and r is the current radius. This
gradient is zero in the other domains. The additional
parameters involved in the Maxwell equations are the
following:

— p: magnetic permeability

— o electric conductivity

— p: electric resistivity (equal to 1/a)

- w: electric pulsation (w = 27® f;, where f; is the
frequency).

The Maxwell equations and Ohm’s law giving the
electromagnetic equation are the following:

il -7 1)
B =Rot A (2)
720@ (3)
E =—iwA — gradV (4)

After combining the former equations and eliminat-
ing B, 7 and E and after eliminating time, the or-
thoradial projection of the equation obtained including
the unknown orthoradial component Ay of the vector
potential A may be written as follows :

a1 am) (1 oa
or \ g or 0z uraz
L Yl U
+<W+1;T'>A9— 2Ttp (5)

It must be noted that this equation is a punctual
equation and that U is the voltage amplitude of each
inductor turn. For all the other domains such as the
induced materials, U, and thus also the right hand side
of the equation, is zero.

The Matlab finite elements solver works only in a
two-dimensional Cartesian co-ordinates system (zy). So

in this Cartesian co-ordinates system and by assuming
the correspondence between r and x and between z and
y, the equation (5) may be written :

o (1 a4 2 (1 ok,
or \ u  Oox dy uzay

+ (i+i—"ix> Ap= 2 (6)
pr p 2mp

Finally, by using the vector operators, this equation
may be written:

—div (lxgraaA9> + (L +i£x> Ag = _L (7)
2 pr p

21p

The equation (7) corresponds to the generic equation
with the scalar unknown u suggested by the Matlab
finite elements solver. This equation is:

—div(c gradu) 4 au = f (8)

Thus the coefficients of this equation must be entered
for each sub-domain as follows:

1
c—;x (9)
1 LW
U
f:—m (11)

In the a coefficient the 1/z term could give a problem
by becoming infinite when z tends to zero on the
symmetry axis which is the case for the mesh triangles
which have nodes on this axis. But as the Matlab solver
uses a Gauss method the integrals are never calculated
on the mesh nodes but inside these meshes, so that the
integrals remain finite. Nevertheless it must be admitted
that while this method gives an excellent accuracy for
polynomial terms it is less accurate for a term like 1/x.

It must be noted that, although it is not the case
here, the coefficients ¢, a and f may be dependent on
the unknown u (thus on Ag) by using the non linear
solver. It is for instance possible to take into account a
non linear magnetic core whose permeability is given by

a function of %— |gra3 (r A9)|.

4.3. Geometry and boundary conditions

It may be assumed that the SiC powder itself, as it
does not couple on the electromagnetic field, is not very
influential in the study of the global electromagnetic
and thermal aspects. So it has been removed from the
studied system, which means that the graphite crucible
inner chamber is considered as electromagnetically and
thermally inactive (like a vacuum area).
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The geometry entered in the Matlab finite elements
solver is quite close to the real process geometry and
is given in figure 3. Each sub-domain has a sub-domain
number indicated in this figure. They are listed as
follows :

— sub-domains 1 and 9: vacuum
— sub-domain 2: graphite crucible
- sub-domain 3: graphite holder
sub-domain 4: graphite foam
— sub-domains 5, 6, 7, 8, 10: inductor copper turns.

The boundary condition is a Dirichlet condition
expressed by imposing a zero value of the unknown Ay
at the external boundary corresponding to the ABCD
rectangular contour in figure 3. This corresponds to
an anti-symmetric condition on the AD revolution axis
and to an Ag vanishing to zero on the AB,BC and CD
boundaries if they are far enough from the inductive
system.

U4 T T T
D - T — C

0.3 e R SRS

02| o e

[]_1::,_ o s D

0oa00
50100

1 &
b 4N

02 : [ L R RS NN
R , i 5

] 1
v ' 1
] . i
H i

0 0.1 0.2 03 0.4

Figure 3. Electromagnetic model geometry.
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4.4. First solving step and results

The whole domain is meshed by several successive
refining operations into triangular meshes with the auto-
adaptive mesh generator until there are about two
triangles in the skin depth which is about 0.2 mm
at the 114 kHz working frequency in the copper
inductor turns (more than two triangles in the skin
depth improves the results by only a few percent),
thus giving a total amount of about 40 000 triangles.
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The solving conditions correspond to the electrical
experimental test detailed in table II. In this test the
measured inductor voltage is 353 Vims which is applied
to the ends of the 5 series turns. So, for this first
model solving step, the input voltage U per turn in
the electromagnetic equation presented in part 4.2
is equal to the total measured voltage divided by
5, meaning 70.6 Vims. After solving, the orthoradial
potential vector component Ag is obtained for the
whole of the studied domain. Consequently the above
Ohm’s law and Maxwell equations (3) and (4) give the
current density in the 5 inductor turns corresponding
to the 5 sub-domains 5, 6, 7. 8 and 10 in figure 3.
This current density is integrated in each turn with the
aid of a custom written integration function, implying
the determination of the total current in each of the
five inductor turns. These calculated currents. named
I, Is, Iz, Ig, Iip (the numbers correspond to the sub-
domain numbers of figure 3) are schematically indicated
in figure 4. These complex currents are mainly inductive
with a major imaginary part. which is normal at this
high working frequency, but they are not equal when
they should be equal since the five turns are connected
in series. Effectively the current module in the median
turns is almost twice as small as the current module in
the end turns with a normal vertical symmetry. This
comes from the fact that on the one hand the inductance
of each turn including the mutual inductance with the
other turns is not the same, being smaller at the ends
(turns 10 and 8) than in the middle (turn 6), and on
the other hand this first solving step is performed with
the same voltage U at the ends of each turn in the
electromagnetic equation. That means that the solving
method must be improved by taking into account the
turn currents equality, thus implying the non equality
of the U voltage on each turn in the electromagnetic
equation. This is explained in the next section.

02

01 : ;v ......
i : & 8= 9 T
00 . O 17 = 68imn

.....................

O =i IR S
DS 6B RS !

a : o= 0519 S i
L :

0.05 — —1  IE I CETERERS 4

01 U SO i

0.15 SR S
0.2 i

7] 0.05 01 0.15 02 0.25 0.3 0.3 0.4

Figure 4. Turn currents calculated after first solution step.
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4.5. Solving with currents equilibration

The turn currents equilibration will be obtained by a
custom written ‘equilibration’ function which performs
successive iterative solutions with a numerical voltage
adjustment on each turn until current equilibration
is obtained. The starting solution corresponds to the
former first solving step with the same U voltage
(U = 70.6 Vims) on each turn. The working flowchart
of this equilibration function corresponds to a Jacobi
method and is outlined in figure 5 with the following
naming of the electrical parameters related to the five
turns which have sub-domain numbers 5, 6, 7, 8 and 10
(in figure 4 above):

- Us, Us, Uz, Us, Uip: voltages at the ends of each
turn;

~ Is, I, I7, Ig, I10: turn currents;
— Zs, Ze, Z7, Zs, Z10: impedance of each turn;

starting Ag solution obtained after
first state solving with:
US=Ub=U7=U8=U10=U (=70.6V ;)
]
Lal|
calculation of the current on each turn by integration
of the current density {each current depends on the
corresponding turn voltage) :
15=F(US); 16=FU6Y, I7=F(LI7); 18=F(U/8); 110=F(L/10)

calculation of each tumn impedance:
Z5=US/I5, Z6=U6/16, Z7=U7i17, Z8=U8/18; Z10=U10/{10

[

calculation of the mean current:
Lnean=US+16+17+18+110)/5

l

calculation of the difference between Iyeqn and
each turn current :
Di=lyeun— 15
Db=1oun— 16
D7= Len— 17
DB=lpun~ 18
DI0= ey ~ 110

1

calculation of the new tum voltages (relax is
a relaxation coefficient whose value is 10):
US=US+Z5*D5/relax
U6=U6+Z6*D6Irelax
U7=U7+Z7*D7Irelax
UB=U8+Z8*D8irelax
UI0=U10+Z]0*D10irelax

I

Solving and determination of the new
Ag solution with the new turn voltages
Us,us.u7,u8,Uio

current equilibration obtained ?

yes

end

Figure 5. Flowchart of turn currents equilibration calculation.

— Imean: mean value of the turn current;

— Ds, D¢, D7, Ds, D1g: difference between Iyean and
each turn current (D; = Imean — I; with i = 5, 6, 7, 8,
10).

Thus after less than 10 iterations, the equilibration of
the turn currents is obtained with a set of turn voltages
which are no longer equal, as represented in figure 6.
Effectively these voltages (with a major real part) show a
normal vertical symmetry and are greater in the middle
(Us = 77 Vims) than at the ends (Us = Uyp = 64 Vims).
This calculated electrical working corresponds now to
the real inductor working with the five turns connected
in series.

02 . o ,

0.45 Q g
0t
a5l

0

G000

-0.08

01

1} oes a1 v FD.15 FU.2 0.25 0.3 0.3 04

Figure 6. Turn currents and voltages obtained after current
equilibration calculation.

4.6. Solving and results

After solving with current equilibration, some inter-
esting results are obtained. First, figure 7 gives a sketch
of the field lines, obtained classically by drawing the
lines of constant value of the Ay module multiplied by
the z co-ordinate.

Contour: x.*abs{u)

Pl

L 2
g 005 01 G155 02 0625 03 3% 04

Figure 7. Magnetic field lines (obtained by drawing the Ag
module multiplied by the = co-ordinate - values going from 0

to 1.5-107° wb-m~1).
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The calculated inductor current module is 157 Apps,
which is close to the measured current of 152 A
(table II). By adding the five calculated turn voltages
Us, Us, Uz, Us and Uyo, the total inductor voltage U, is
353 - 0.052 7 (Vims) which is very close to the measured
353 Vims (table II}. By dividing U. by the inductor
current, the following values of the global resistance R
and inductance L are obtained :

— resistance: R = 113 mQ
~ inductance: L = 3.14 uH

These values are also close to the measured values
(table I, second line).

The current density distribution is also determined
in each turn and this gives interesting information about
this real distribution which is given in module form in
figure 8 on which the z axis is the radial direction and
the y axis is the vertical axial direction. These axes are
the same as those defined in section 4.2. It can be clearly
seen that the current density exhibits a normal vertical
symmetry (along Oy) and is contained all around each
turn in the electromagnetic skin depth which is small at
the 114 kHz working frequency (0.2 mm) compared with
the turn diameter (10 mm). These results are typical.
But the additional interesting point arising from this
is the determination of the current density distribution
around the turns cross section: it can be noted that
the major part of the current density is located on the
part of the turns perimeter which faces the revolution
axis, with a shifting toward the top for the upper end
turn 8 and toward the bottom for the lower end turn 10.
All these factors mean that the inductor corresponding
resistance is always much stronger at these middle or
high AC working frequencies than during DC when
the current density is evenly distributed in the cross
section of each turn. This effect is called the ‘proximity
effect’ and is due to inductive interactions between all

¥ {axial direction)

current density
module
A Turn 10

#10°

x (radial direction)

Figure 8. Current density module in the 5 inductor turns.
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of the turns and between the turns and the induced
materials. Consequently it is important to note that
the induced effects in the induced materials, such as
the crucible, are strongly dependent on this real non
uniform inductor current density distribution. which
also has a considerable influence on later temperature
determination.

Finally, from the Ag solution obtained which is
now determined in each electrical conducting material
of the studied domain, it is easy to determine the
corresponding Joule induced volume power density ¥
by the following expression:

¥ =cw’ Ag A} (12)

This power density is calculated with a custom
written function on a rectangular grid which includes
the induced materials, i.e. the graphite crucible and
holder and the graphite foam. corresponding to the 2, 3
and 4 sub-domain numbers (on all the grid nodes which
do not belong to the induced materials, ¥ is forced
to zero). This power density will be used as the heat
source term of the thermal equation and is represented
in figure 9 on which the z axis is the radial direction and
the y axis is the vertical axial direction. It can be noted
that the graphite crucible and holder and the graphite
foam couple on the magnetic field with a major part in
the crucible which must be the case in order to achieve
an efficient heating of the SiC powder.

By integrating the volume power density ¥ on the
whole volume of the graphite crucible and holder and
the graphite foam the total induced power obtained is
2275 W. This is in good agreement with the electrical
measurements given in table II of § 3 corresponding to
a Vo =2kV anode DC voltage and a I, =2 A anode
DC current on the triode generator. The related DC
net power is equal to V, ., i.e. 4000 W. After taking
into account the classical 70 to 756 % generator efficiency
and the 64 % inductor coupling efficiency issuing from
the measurements given in table I (inductor alone
and inductor 4 furnace) the remaining power directly

crucible coupling
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Figure 9. Volume power density repartition.
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injected into the induced materials is about 2000 W
which is very close to the previously numerically
calculated 2275 W.

So it may be concluded at this step that the
electromagnetic model gives results which are in good
agreement with the experimental measurements and
that it is possible to go further by setting up the thermal
model which will be coupled to the electromagnetic
model by use of the previously calculated ¥ volume
power density as the heat source.

5. THE THERMAL MODEL

As stated above in § 4.6, the induced volume power
censity ¥ is calculated on a rectangular grid including
the induced materials such as the graphite crucible,
holder and foam. This calculation is made by a custom
written function which extrapolates the Ag solution
obtained after solving on this rectangular grid and uses
expression (12) to determine ¥ on each node (z;, y;) of
this grid. The step of this grid is about 1 mm, which
is obtained with 40 points for the z; and 200 points
for the y;, giving a total amount of 8 000 points. This
induced volume power density is the heat source for
heating the furnace which is modelled by the thermal
model which takes into account the graphite crucible,
holder and foam. This thermal model is also set up by
using the Matlab finite elements solver for solving the
thermal equation as explained in the following steps.

5.1. Properties of the materials

The solid graphite crucible and holder have a
good thermal conductivity implying a relatively small
temperature gradient inside them. Thus their thermal
conductivity kg is constant and equal to the value of the
graphite thermal conductivity at an estimated mean
temperature of about 1500 °C, ie. 53 W-m 'K %
On the other hand, a strong temperature gradient is
expected in the graphite insulating foam. The thermal
conductivity k¢ of this foam is therefore chosen as a
function of the temperature 7', which is the following
expression, according to the bibliography [10]:

k; =017107°7% +0.08 (W-m™ 1K) (13)

5.2. The thermal equation

As the problem is axi-symmetric, a cylindrical co-
ordinates system (r,6,z) is used as for the electro-
magnetic problem. The temperature 7 is the scalar
unknown. The classical temperature diffusion equation

where k is the thermal conductivity and ¢ is the right
hand side volume power density giving the heat source,
is written as follows:

—div(kgrad T) = ¢ (14)

By developing the divergence and gradient operators
and by multiplying the two sides by the current radius
r, this equation may be written as following:

d oT d or ‘

The Matlab finite elements solver works only in a two-
dimensional Cartesian co-ordinates system (zy). Thus
in this Cartesian co-ordinates system and by assuming
the correspondence between r and x and between z and
y, the equation (15) may be written :

d oT 9 oT

Finally, by using the vector operators, this local
equation on each point (z,y) of the domain under
consideration may be written:

—div(kzgradT) =¥z (17)

The equation (17) corresponds to the generic
equation with the scalar unknown u suggested by the
Matlab finite elements solver which is:

—div(cgrﬁu)—l—au:f (18)

Thus the coeflicients of this equation must be entered
for each sub-domain as follows:

c=kzx (19)
a=0 (20)
f=vz (21)

As previously stated the thermal conductivity k& = k¢
of the graphite foam is a function of the unknown
temperature, which needs the use of the non linear
solver. The right hand side of the equation f = ¥z is
directly a custom written function which interpolates
the former volume power density ¥ obtained by
solving the electromagnetic problem (§ 4.6) from the
rectangular grid (z;, y;) to each current point (z,y) and
which multiplies this power density by the current z
co-ordinate.

5.3. The geometry and boundary
conditions

The geometry entered in the Matlab finite elements
solver is quite close to the real process geometry and is
given in figure 10. Each sub-domain has a sub-domain
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Figure 10. Thermal model geometry.

number indicated on this figure. They are listed as
following;:

— sub-domain 1: graphite crucible;

— sub-domain 2: graphite holder;

- sub-domain 3: graphite foam.

The set of boundary conditions is the following:

— on faces EF and GH: thermal flux generalised
Neumann boundary conditions relative to convection
losses expressed by — k7 gradT = h(T — Tamp) Wwith
a convection coefficient h = 5 Wm 2K~! and an
estimated ambient temperature Tomp, = 773 K (500 °C)
(T is the normal vector on the boundary);

— on face FG: fixed temperature Dirichlet boundary
conditions; this temperature is estimated at 773 K
(500 °C);

— all the other faces are insulated (no losses) which is
expressed by a zero thermal flux generalised Neumann
boundary condition. As previously stated the SiC
powder has been removed for simplification, which
means that the surface of the graphite crucible internal
chamber is considered as a boundary.

5.4. Solving and results

After meshing the three sub-domains with the auto-
adaptive mesh generator of the Matlab finite elements
solver, a first solving of the thermal equation is done
and gives the temperature distribution as indicated in
figure 11. In this figure, it can be noted that the major
part of the temperature gradient is in the graphite
insulating foam and that the temperature gradient in
the graphite crucible is low with a mean value of the
temperature of about 1600 °C, the lower part being
slightly hotter than the upper part. The corresponding
temperatures Ta, Ts, Tc and Tp of the 4 specific points
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Figure 11. Calculated temperature distribution after first
solution.

A, B, C and D of figure 10 are indicated in figure 11
and are the following: Ta = 1548 °C, 15 = 1710 °C,
Tc=1548 °C, Tp =1713 °C. The temperature at
points A and B have also been measured (see section 3,
first line of table III}, showing that the calculated values
Ta and Tg are close to the measured ones with less than
10 % error but with an inverted gradient between A and
B. It is clear that these differences depend on the choice
of the boundary conditions set of the thermal problem.

In order to improve the accuracy of the results, a
second solving is done by adding to the former bound-
ary conditions set a radiative thermal flux generalised
Neumann boundary condition on the horizontal faces
of the crucible internal chamber (which was insulated
for the first solution) corresponding to the couples
of faces (CO, PQ) and (DR, ST) which face each
other as indicated in figure 10. This additional Neu-
mann boundary condition is expressed as —k @ g.ré—aT
=g o5 (T* = T7;) in which ¢ is the emissivity (equal to 1
for the graphite), oy is the Stefan-Boltzmann constant
and Trer is the reference temperature on which the con-
sidered face radiates. The reference temperature of the
radiative losses of the couple (CO, PQ) is assumed to
be the previously calculated average temperature (ob-
tained by the first solution) of the other couple (DR,
ST) and reciprocally. This is easily done by entering
this additional boundary condition in the Matlab solver
on the boundaries corresponding to the couples of faces
(CO, PQ) and (DR, ST). This must be considered as
a simplified manner of taking into account the ‘face to
face’ radiation losses which exist in the internal chamber
of the graphite crucible. The results of this second solu-
tion are given in figure 12 on which the corresponding
temperature Ta, T8, Tc and Tp of the 4 specific points
A, B, C and D of figure 10 are indicated. They are the
following: Ta = 1706 °C. Ty = 1573 °C, Tc = 1713 °C,
Tp = 1554 °C. Tt can be noted that the two calculated
temperatures Ta and Ty are quite close to the measured
temperatures (see first line of table III) with the right
gradient this time.

Thus the thermal model is in good agreement
with the measurements and the global electromagnetic-



An electromagnetic-thermal coupling example solved on a high frequency inductive system

thermal model can be considered as a design and
optimisation tool for this kind of inductive process.
It must be noted that exact matching between this
kind of modelling and the real device is quite difficult
to obtain because some data such as, for instance, the
thermal boundary conditions, are difficult to evaluate.
Therefore this kind of design tool is mainly of interest
for studying the relative behaviour variations due to the
different parameter variations.

6. CONCLUSION

The work presented in this paper is related to
the application of a two-dimensional electromagnetic-
thermal coupling model set up with the Matlab finite
elements solver for the optimisation of a single SiC
crystal inductive elaboration process. The SiC crystal
is obtained in a graphite crucible which is heated by
induction, after sublimation of the SiC starting powder
and condensation on the upper face of the crucible. This
optimisation tool is mainly focused on the ‘macroscopic’
electrical and thermal engineering aspects.

The electromagnetic model using an equation derived
from the Maxwell equations and Ohm’s law with
an imposed inductor voltage gives all the electrical
parameters, i.e. the resistance, the inductance and
the coupling efficiency of the inductive system. These
parameters are in good agreement with the measured
values. The real inductor current density distribution
is also obtained, showing an uneven distribution with
a shift toward the inner faces of the turns. It must
be noted that taking into account this real inductor
current density, called proximity effects, is important
for the accuracy of the induced effects in the different
coupling materials such as the graphite crucible and the
graphite insulating foam. Finally this model gives the
power density distribution in these coupling materials.
This power density distribution is then used as the heat
source to achieve the coupling with the thermal model.

The thermal model is also solved with the Matlab
finite elements solver with an appropriate boundary
conditions set including both fixed temperature and
thermal flux conditions. This requires the use of the
non linear solver, particularly because the insulating
foam thermal conductivity is chosen as a function of the
temperature. The temperature distribution obtained in
the coupling materials such as the graphite crucible is
in good agreement with the measured values.

In conclusion, it can be said that the mathematical
and graphical efficiency of Matlab associated with its
finite elements solver can be considered as a new
and original global electrical and thermal optimisation
tool which is quite easy to manage for the design
or optimisation of middle or high frequency inductive
industrial processes. The main inconvenience of this tool
is that, compared with other finite elements solvers, it

is used as a ‘closed box’ and so it does not allow the
user to control how it works internally from a numerical
point of view. But it must be accepted that, thanks to
the Windows (and also Unix) working environment, it
is quite convenient to use for researchers or engineers
and, according to the results presented in this paper,
gives good precision for the optimisation of induction
processes.
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Figure 12. Calculated temperature distribution after second
solution.
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