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A b s t r a c t -  The simple SiC crystals inductive elaboration process is useful for specifc devices working in electronic and 
optoelectronic areas. The SiC powder material is placed at the bottom of a graphite crucible and is inductively heated for 
out-gassing at about 1 600 °C in a controlled atmosphere. The SiC vapour is then transported to a condensation area on the top 
of the crucible where it condenses on a seed, forming a single crystal. The optimisation of this type of process requires numerical 
modelling. In this paper, a new and original electromagnetic-thermal coupling modelling tool based on the Matlab two-dimensional 
finite elements solver is presented. The electromagnetic model based on an 'inductor voltage imposed' equation gives the real 
inductor current density distribution, the impedance and coupling efficiency of the inductive system and the volume power density 
distribution in the induced charges such as the graphite crucible and holder and the surrounding insulating foam. The coupling 
with the thermal model is then achieved by taking this power density as the heat source on the right hand side in the energy 
equation. The temperature distribution issues from this coupling. The electrical and thermal results are in good agreement with 
measured values. This work shows that the Matlab mathematical and graphical efficiency associated with its finite elements solver 
builds an interesting tool for electrical and thermal design and optimisation of middle or high frequency inductive industrial 
processes. © Elsevier, Paris. 

induction system / crystal growth / elaboration process / finite elements solver / electromagnetic-thermal coupling 

R~sum~ - -  Un exemple de couplage electromagn~tique-thermique resolu sur un syst~me ~ induction haute fr~quence 
I'aide du solveur d'~lEments finis de Matlab est pr~sente. Le procEdE d'~laboration par induction de monocristaux de SiC est 
utilis~ pour certains ~quipements sp~cif-iques dans le domaine de I'~lectronique et de I'opto~lectronique. La poudre de SiC est 
disposfie au fond d'un creuset en graphite et est chauffee par induction a une temperature de I'ordre de 1 600 °C en atmosphere 
contr61~e pour la phase de dfigazage. Les vapeurs de SiC sont ensuite transportees vers une zone de condensation en partie 
supErieure du creuset o~J elles se condensent sur un germe, en formant un monocristal. L'optimisation de ce type de proc~dE 
requiert une phase de modElisation num~rique. Dans cet article, un nouvel outil original de modelisation numErique du couplage 
filectromagnetique-thermique bas~ sur I'utilisation du solveur d'~lEments finis bidimensionnel de Matlab est prEsentfi. Le modEle 
electromagnfitique base sur une fiquation en ~tension d'inducteur imposEe~ donne la distribution r~elle de la densitE de courant, 
I'impEdance et le rendement de couplage du systEme ~. induction, ainsi que la distribution de la puissance volumique dans les 
charges induites, comme le creuset en graphite, le support en graphite et le feutre de graphite isolant entourant I'ensemble. Le 
couplage avec le module thermique est ensuite obtenu en considerant la puissance volumique comme la source de chaleur dans le 
second membre de I'Equation de I'finergie. La distribution de temperature est issue de ce couplage. Les resultats des modElisations 
~lectromagn~tique et thermique sont en bon accord avec les mesures. Ce travail montre que I'efficacit~ mathEmatique et graphique 
de Matlab, associ~e avec son solveur d'~lEments finis, constitue un outil int~ressant d'aide ~_ la conception et /t I'optimisation de 
procfides inductifs industriels moyenne et haute fr~quence. © ELsevier, Paris. 

syst~me ~ induction / croissance cristalline / proc~des d'~laboration / solveur d'~lements finis / couplage electromagnetique- 
thermique 

Nomenclature A vector  po ten t i a l  . . . . . . . . . . . . . . . . . . . . .  W b . m -  ~ 

a eoet:ficient of the M a t l a b  generic equa- B magne t i c  induc t ion  . . . . . . . . . . . . . . . . . .  T 

t ion c coefficient of the M a t l a b  generic equa- 
t ion 

C capac i ty  connected  to the induc tor  . . .  * Ro land .E rns t  C~polycnrs-gre. fr F 
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D5,D6,DT,Ds,Dm difference between mean 
current /mean and each turn  cur ren t . .  A 

E electric field . . . . . . . . . . . . . . . . . . . . . . . .  V . m -  1 
f coefficient of the Matlab generic equa- 

tion 
h convection coefficient . . . . . . . . . . . . . . . .  W . m - 2 . K  -1 
i complex square root of - 1  
I5,I6,IT,Is,Im current in each inductor turn  A 
j current density . . . . . . . . . . . . . . . . . . . . . .  A.m -2 
k thermal  conductivity . . . . . . . . . . . . . . . .  W . m - I . K  -1 
L inductance . . . . . . . . . . . . . . . . . . . . . . . . .  H 
n unity vector normal to the boundary 
r radial co-ordinate of the cylindrical co- 

ordinates system . . . . . . . . . . . . . . . . . . . .  m 
R electrical resistance . . . . . . . . . . . . . . . . . .  
relax relaxation coefficient for currents equi- 

libration calculation 
t time ............................... s 

T temperature  . . . . . . . . . . . . . . . . . . . . . . . .  K 
u unknown of the Matlab generic equa- 

tion 
U current tu rn  voltage . . . . . . . . . . . . . . . . .  V 
U5, U6, U7, U8, Ulo voltage of each inductor 

turn  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  V 
V electric scalar potential  
x x-co-ordinate of the Cartesian co- 

ordinates system . . . . . . . . . . . . . . . . . . . .  m 
xi x-co-ordinate of the power density 

calculation grid nodes . . . . . . . . . . . . . . .  m 
y y-co-ordinate of the Cartesian co- 

ordinates system . . . . . . . . . . . . . . . . . . . .  m 
yi y-co-ordinate of the power density 

calculation grid nodes . . . . . . . . . . . . . . .  m 
z axial co-ordinate of the cylindrical and 

Cartesian co-ordinates system . . . . . . . .  m 
Zs, Z6, Z7, Zs,  Zlo impedance of each induc- 

tor turn  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  f /  

Subscripts 

Ao orthoradial component of vector poten- 
tial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

AS complex conjugate of Ao . . . . . . . . . . . .  
Eo orthoradial component of electric field 

vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  V -m-  1 
fr  working frequency . . . . . . . . . . . . . . . . . . .  Hz 
Ia anode current . . . . . . . . . . . . . . . . . . . . . . .  A 
Ii inductor current for measurements . . . .  A 
/mean mean value of the inductor turn  cur- 

rents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Jo orthoradial component of current den- 

sity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
thermal  graphite foam conduct iv i ty . . .  kf 

kg 

r amb  
r ref  

Ut 
V~ 

Wb.m -1 
W b . m - 1  

A 

A . m  - 2  
W . m - 1  . K - 1  

thermal  graphite conductivity . . . . . . . .  W . m - I . K  -1 
mnbient temperature  . . . . . . . . . . . . . . . .  K 
reference temperature  for radiative 
losses 
total  inductor voltage . . . . . . . . . . . . . . .  V 
anode voltage . . . . . . . . . . . . . . . . . . . . . . .  V 
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Voc inductor voltage . . . . . . . . . . . . . . . . . . . .  
TA,Ts,Tc,TD temperature  at points A, B, 

C,  D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Greek 
£ 

# 
0 

symbols 

emissivity 
magnetic permeability . . . . . . . . . . . . . . .  
angular co-ordinate of the cylindrical 
co-ordinates system . . . . . . . . . . . . . . . . .  
electrical resistivity . . . . . . . . . . . . . . . . . .  
graphite foam electrical resistivity . . . .  
graphite electrical resistivity . . . . . . . . .  

electrical conductivity . . . . . . . . . . . . . . .  

V 

K 

H.m-1 

rd 
p Q . m  
pf .O.m 
pg .O.m 
ff ~--I .in_ 1 

fist Stefan-Boltzmann constant . . . . . . . . . .  W. in -2-K -4  
w angular frequency . . . . . . . . . . . . . . . . . . .  rd.s -1 
~p volumic power density . . . . . . . . . . . . . . .  W . m  - 3  

1. INTRODUCTION 

T h e  e l a b o r a t i o n  of s ingle c rys ta l s  of SiC is useful  for 
some specific devices  in e lec t ron ic  a n d  op toe l ec t ron i c  
areas .  T h e  p r o p e r  work ing  of these  devices  requi res  
good  c rys ta l  qual i ty .  M a n y  efforts  have  b e e n  m a d e  
in r ecen t  years  to  improve  th i s  qua l i t y  by  deve lop ing  
specia l  e l a b o r a t i o n  processes  [1-4]. 

T h e  e l a b o r a t i o n  process  c o n c e r n e d  in th i s  p a p e r  is 
b a s e d  on  t he  h e a t i n g  by  i n d u c t i o n  of t he  SiC p o w d e r  
m a t e r i a l  in  a sea led  fu rnace  a t  a t e m p e r a t u r e  h ighe r  
t h a n  1 800 K a n d  a p ressu re  lower t h a n  5.103 Pa.  T h e  
SiC wh ich  is p l aced  a t  t he  b o t t o m  of a g r a p h i t e  c o n t a i n e r  
is t h e n  s u b l i m a t e d  in a n  ine r t  gas a n d  t r a n s p o r t e d  
o n t o  t he  u p p e r  colder  face where  i ts c o n d e n s a t i o n  is 
i n i t i a t e d  on  a seed p laced  in a precise  spot .  T h u s  it  is 
poss ib le  to  o b t a i n  a s ingle c rys ta l .  T h e  a b o v e - m e n t i o n e d  
t e m p e r a t u r e  of 1800  K is r e l a t ed  to  t h e  ou t -gas s ing  
p h a s e  wh ich  is cons ide red  in th i s  paper .  

T h e  di f ferent  e x p e r i m e n t s  which  have  b e e n  done  
show t h a t  t h e  qua l i t y  of t h e  c rys ta l  d e p e n d s  on  m a n y  
p a r a m e t e r s  wh ich  m u s t  be  t a k e n  in to  accoun t  in  such  
a process .  F r o m  a 'm ic roscop ic '  po in t  of view, w h e n  for 
i n s t a n c e  a n a l y s i n g  t he  c ry s t a l  g rowth ,  p h e n o m e n a  such  
as phys ica l  v a p o u r  t r a n s p o r t  a n d  chemica l  r eac t i ons  
m u s t  be  s tud ied .  B u t  f rom a 'mac roscop ic '  po in t  of view, 
for i n s t a n c e  for t he  g lobal  des ign  of t he  fm-nace, these  
p h e n o m e n a  c a n  be  s impl i f ied  a n d  on ly  e l e c t r o m a g n e t i c  
a n d  t h e r m a l  a spec t s  have  to be  s tud ied ,  wh ich  is t h e  
case in t h i s  paper .  

T h e  work p r e s e n t e d  in th i s  p a p e r  c o r r e s p o n d s  to  th i s  
'mac roscop i c '  po in t  of view: i ts  p u r p o s e  is t h e  use of t i le  
M a t l a b  f ini te  e l e m e n t s  solver  for so lv ing  t he  coup l ing  
of e l e c t r o m a g n e t i s m  a n d  hea t  t r a n s f e r  in t h e  f l l rnace.  
T h i s  e l e c t r o m a g n e t i c - t h e r m a l  mode l l ing  is specif ical ly  
useful  for t he  e lec t r ica l  p a r t  of t he  des ign  of th i s  fu rnace  
a n d  also gives i n t e r e s t i ng  d a t a  a b o u t  t he  t e m p e r a t u r e  
g r a d i e n t  in t he  fu rnace  wh ich  is r equ i red  in o rde r  to  
o b t a i n  a cor rec t  s u b l i m a t i o n  a n d  c o n d e n s a t i o n  of t he  
SiC. T h u s  it  gives t he  guidel ines  for a p r o p e r  g lobal  
des ign  of such  a process .  
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Many publications have been written concerning the 
finite elements method, about both the theory [5, 6] and 
its applications for electromagnetic modelling [7] and 
electromagnetic-thermal coupling [8]. Thus the finite 
elements method will not be presented again here. But 
with the presentation of the electromagnetic-thermal 
steady state model, the main original advantages of 
using the Matlab environment and its included finite 
elements solver (Partial Differential Equations Toolbox) 
will be shown. It must be clearly noted that  the aim of 
~his work is not to optimise the finite elements methods 
but to use the Matlab finite elements solver as a help 
for studying the SiC crystal growth process from a 
electromagnetic and ttlermal point of view. The main 
steps of this modelling process with the corresponding 
original points may be described as follows: first, 
the electromagnetic equation whose unknown is the 
orthoradial component of the vector potential at each 
point, is solved including a right hand side source term 
which is related to the inductor voltage imposed by 
the generator. This allows the real inductor current 
density distribution to be determined in each turn and 
also the distribution of the induced current density 
in the different induced materials. This solving mode 
shows clearly the proximity effects between the turns 
themselves and between the turns and the charges 
implying a non regular distribution of the inductor 
current density in each turn. By integration of this 
current density in each turn, the inductor current is 
obtained, giving the complex impedance of the system, 
i.e. its resistance and its reactance which are useful for 
the electrical aspects. Then the induced power density 
issuing from the current density is determined at each 
mesh point of the induced pieces. This power density is 
~hen extrapolated for each node of the thermal mesh and 
becomes the source term of the thermal equation which 
is also solved by finite elements. Finally the temperature 
repartition in the concerned materials is obtained. The 
boundary conditions involving convection and radiation 
losses or imposed temperature are fixed by generalised 
Neuman or Dirichlet conditions. In the electromagnetic 
equation the resistivity of the materials is constant 
and equal to its value corresponding to the estimated 
mean temperature. In the thermal equation, the thermal 
conductivity is dependent on the temperature. The 
electrical and thermal results issuing from this model 
are compared with experimental measures made on 
the real process which is in a development stage. 
The different steps of this electromagnetic-thermal 
modelling preceded by a presentation of the process 
and the corresponding experimental measurements are 
presented in the following parts of this paper. 

2. PRESENTATION OF THE PROCESS 

The main part of the process is sketched in figure 1. 
The silicon carbide (SIC) powder which must be 
heated and sublimated is placed at the bot tom of a 

~r cooled 
" tz  t u b e  

i n s u l a t i n g  graphite 
foam 

inductor 

condensation a r e a  

graphite crucible 

2 p o w d e r  

:aphite holder 

Figure 1. Diagram of the process. 

graphite crucible whose top includes a SiC seed on a 
condensation area on which a single crystal grows by 
condensation of the transported vapour. This crucible 
is surrounded by a thermal insulating graphite foam 
which is fitted with holes at the top and the bottom, 
thus allowing pyrometric measurements. An additional 
graphite holder is set under the foam. 

A water-cooled double jacket quartz tube is set 
around the crucible and the insulating foam so that, 
thanks to two top and bot tom flanges, the heating 
and sublimation processes are achieved in an argon 
controlled atmosphere. 

A heating inductor is placed around the quartz tube. 
This water-cooled five turn copper inductor is connected 
to a capacity bat tery forming a parallel oscillating 
circuit which is connected to a 50 kW high frequency 
triode generator with a 114 kHz working frequency. 

In order to obtain a single crystal growth by 
condensation of the SiC vapours on the seed placed 
on the top of the graphite crucible, the estimated 
temperature in the corresponding area is about 1 600 
to 1 800 °C. This shows one of the major points of the 
numerical model: after validation of this model by the 
only two external measured temperatures at points A 
and B of figure 1, it is then possible to know, thanks to 
this theoretical modelling, the temperature inside the 
graphite crucible where any experimental measurement 
is difficult to obtain. 

3. MEASUREMENTS RESULTS 
ON THE INSTALLAT ION 

In order to validate the electromagnetic-thermal 
modelling of the furnace, some electrical and thermal 
measurements were made on the device. 
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The simplified electrical sketch of the inductor  
connection to the t r iode generator  is given in figure 2. 
Tile working frequency is 114 kHz. The inductor  is 
connected in parallel  with a set of five 3 laF capacitors 
connected in series and forming a capacit ive potent ia l  
divider, the generator  being connected at the ends 
of three of these capacitors.  This assumes a correct 
impedance adapta t ion .  The whole capaci ty  value of the 
five series capaci tors  connected to the inductor  including 
the furnace is C = 0.6 gF.  These capaci tors  form a self- 
oscillating circuit with the inductor.  

induced charge 

2 ° ' / °  • O O 

-q- O O 
-l-- 
-n- O O 

7 - "  O O 

inductor 
total capacity : 
C - 0 . 6  pF 

Figure 2. Induction system connection to the generator. 

Finally, for several values of the anode voltage, the 
tempera tures  TA and TB at the top and the bo t tom of 
the crucible (points A and B in figure I) are measured 
by pyrometer  through the holes in tile graphi te  foam. 
The measured values are given in table III. 

TABLE II 
Measured anode DC voltage and current and inductor AC 

voltage and current in the installation. 

Anode Anode Inductor Inductor 
voltage current voltage current 
lz~ I~ Voc L 
2 kV 2 A 353 Vrms 152 Am~ 

TABLE III 
Measured temperature of upper and lower points A and B 

for different anode voltages and currents. 

Anode Anode Upper Lower 
voltage current temperature temperature 
V~ (kV) I~ (A) r a  (°C) TB (°C) 
2 2 l 700 1 668 

2.4 2.5 2 000 1 910 
3 3.2 2 250 2 103 

Firs t ,  after disconnecting the generator,  the capaci ty  
C is connected to an impedance measurement  device 
based on a self-resonant capaci ty  discharge method [9]. 
These impedance measurements  without  the furnace 
inside the inductor  ( inductor alone) and with the 
furnace inside the inductor  ( induc to r+furnace )  are 
outl ined in table I. 

TABLE I 
Measured inductance, resistance, and quality factor 

in the installation. 

Frequency Inductance 

Inductor 
alone 103 kHz 
Inductor 4- 
furnace 114 kHz 

3.95 ~tH 

3.2 gH 

Resistance Quality 
factor 

30 m£'/ 88 

109 mr'/ 21 

The resistance measured without  and with the 
furnace gives the coupling efficiency of the furnace 
which is about  64 %. 

Then the t r iode generator  is connected to the 
oscillating circuit formed by the capacitors  and the 
inductor  with the furnace inside it, and, for the anode 
voltage Va set to 2 kV, the corresponding anode current 
Ia, inductor  voltage Voc and inductor  current h are 
measured,  and are given in table II. 

4 8 4  

These measured electrical and thermal  values are 
used for the validation of the electromagnetic- thermal  
model. The accuracy of these measurements is es t imated 
to about  5 %. 

4 .  T H E  E L E C T R O M A G N E T I C  M O D E L  

4 . 1 .  P r o p e r t i e s  o f  t h e  m a t e r i a l s  

The resistivities of the graphi te  crucible and holder, 
and of the graphi te  foam are assumed to be constant  
and equal to tile value corresponding to the es t imated 
mean tempera ture  of the materials,  meaning 1 500 °C 
for the crucible and 1 000 °C for the foam. According 
to the l i terature [10], the values of & = 1.538.10-5D=m 
for the graphi te  crucible and holder resist ivity and of 
& = 2.3.10-af/ .nl  for tile graphi te  foam resistivity are 
used. 

4 . 2 .  T h e  e l e c t r o m a g n e t i c  e q u a t i o n  

As the problem is axisynmmtric,  a cylindricM co- 
ordinates system (r, 0, z) is used. Tile electromagnetic 
equation is derived from the Maxwell equations with the 
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tollowing unknowns, which are the complex ampli tudes 
(of the corresponding sinusoidal t ime-dependant  fields): 

B': magnetic  induction vector 
____# 

: current densi ty 

N:  electric field 

A': nmgnetic vector potent ia l  

V: electric scalar potential .  

All these unknowns (except for V) do not depend on 
the 0 co-ordinate (~/00 = 0). ~ has two components  
along r and z, and .7, ~ and ~ have only an 
or thoradial  component,  respectively called jo, Eo and 
Ao. The scalar potent ia l  V only varies l inearly with 0 
for the inductor  turns with a corresponding constant  
or thoradial  component  of the potent ial  gradient  g ~ V  
equal to U/(2~r) where U is the turn  voltage (issued 
from the generator)  and r is the current radius. This 
gradient  is zero in the other domains. The addit ional  
parameters  involved in the Maxwell equations are the 
following: 

p: magnetic  permeabi l i ty  

or: electric conduct ivi ty  

p: electric resist ivity (equal to 1/~) 

- w: electric pulsat ion (c0 = 2r~f~, where fr is the 
frequency). 

The Maxwell equations and OhnFs law giving the 
electromagnetic equation are the following: 

- - =  3 (1) 
# 

= ~o7 X (e) 

= ~ Z*  (3)  

= --ico ~ - gr-~a V (4) 

After combining the former equations and eliminat- 
ing ~ ,  ~ and ~ and after elinfinating time, the or- 
thoradial  project ion of the equation obtained including 
the unknown or thoradia l  component  Ao of the vector 
potent ial  ~ nmy be wri t ten as follows : 

- ~  r ~7-~) - ~ ~ a~ ) 

+ + i--  r Ao - (5) 
p 2%p 

It must  be noted tha t  this equation is a punctual  
equation and tha t  U is the voltage ampl i tude  of each 
inductor turn. For all the other domains such as the 
induced materials ,  U, and thus also the right hand side 
of the equation, is zero. 

The Mat lab  finite elements solver works only in a 
two-dimensional Cartesian co-ordinates system (xy). So 

in this Cartesian co-ordinates system and by assuming 
the correspondence between r and x and between z and 
y, the equation (5) may be wri t ten : 

ax x~7-x)-~ xa~) 
+ + i - - x  Ao - 

p 2%p 
(6) 

Finally, by using the vector operators,  this equation 
may be written: ) (1 ) 
- d i v  z ~ A o  + + x Ao - (7) 

p 2%p 

The equation (7) corresponds to the generic equation 
with the scalar unknown u suggested by the Mat lab  
finite elements solver. This equation is: 

- d i v ( c  ~ u )  + a u = I (8)  

Thus the coefficients of this equation must be entered 
for each sub-domain as follows: 

1 
c = - z (9)  

# 

(1 
a = + i - -  x (10)  

p 

u 
f -- (11) 

2 / tp  

In the a coefficient the 1Ix term could give a problem 
by becoming infinite when x tends to zero on the 
symmet ry  axis which is the case for the mesh triangles 
which have nodes on this axis. But as the Mat lab  solver 
uses a Gauss method the integrals are never calculated 
on the mesh nodes but  inside these meshes, so tha t  the 
integrals remain finite. Nevertheless it nmst be admi t ted  
tha t  while this method gives an excellent accuracy for 
polynomial  terms it is less accurate for a term like 1/x. 

It must  be noted tha t ,  al though it is not the case 
here, the coefficients c, a and f may be dependent  on 
the unknown u (thus on Ao) by using the non linear 
solver. It is for instance possible to take into account a 
non linear magnetic  core whose permeabi l i ty  is given by 

a function of _1 I ~  (rAo)l" 
T 

4.3. Geometry and boundary conditions 

It may be assumed that  the SiC powder itself, as it 
does not couple on the electromagnetic field, is not very 
influential in the s tudy of the global electromagnetic 
and thermal  aspects. So it has been removed from the 
studied system, which means tha t  the graphi te  crucible 
inner chamber is considered as electromagnetical ly and 
thermal ly  inactive (like a vacuum area). 
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The geometry entered in the Mat lab  finite elements 
solver is quite close to the real process geometry and 
is given in figure 3. Each sub-domain has a sub-domain 
number  indicated in this figure. They are listed as 
follows : 

sub-domains 1 and 9: vacuum 

sub-domain 2: graphi te  crucible 

- sub-domain 3: graphi te  holder 

sub-domain 4: graphi te  foam 

sub-domains 5, 6, 7, 8, 10: inductor  copper turns. 

The boundary  condit ion is a Dirichlet condition 
expressed by imposing a zero value of the unknown Ao 
at the  external  boundary  corresponding to the ABCD 
rectangular  contour in figure 3. This corresponds to 
an ant i -symmetr ic  condit ion on the AD revolution axis 
and to an Ao vanishing to zero on tile AB,BC and CD 
boundaries  if they are far enough from tile inductive 
system. 

0.4 
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0.1 
0 8  
,o7 

o, 
¢~10 

'C 

-0.1 II 

The solving conditions correspond to the electrical 
experimental  test  detai led in table II. In this test the 
measured inductor voltage is 353 V,. .... which is applied 
to tile ends of the 5 series turns. So, for this first 
model solving step, tile input  voltage U per turn  in 
the electromagnetic equation presented in part  4.2 
is equal to the total  measured voltage divided by 
5, meaning 70.6 ½ ..... After solving, the or thoradial  
potent ial  vector component Ao is obtained for tile 
whole of the studied (tomain. Consequently the above 
Ohm's  law and Maxwell equations (3) and (4) give tile 
current densi ty in tile 5 inductor turns corresponding 
to the 5 sub-dolnains 5, 6, 7. 8 and 10 in figure 3. 
This current density is integrated in each turn with the 
aid of a custom wri t ten integration function, implying 
tile determinat ion of the total  current ill each of the 
five inductor turns. These calculated currents, named 
15, [6, IT, Is, 110 (tile numbers correspond to tile sub- 
domain numbers offig~zr'e 3) are schematically indicated 
in fig'ure 4. These complex currents are mainly inductive 
with a major  imaginary part .  which is normal at this 
high working frequency, but  they are not equal when 
they should be equal since the five turns are connected 
in series. Effectively the current module in tile median 
turns is almost twice as small as the current module in 
tile end turns with a normal vertical symmetry. This 
comes front the fact tha t  on the one hand tile inductance 
of each turn  including tile mutual  inductance with the 
other turns is not the same, being smaller at the ends 
(turns 10 and 8) than in the nfiddle (turn 6), and on 
the other hand this first solving step is performed with 
the same voltage U at the ends of each turn in the 
electromagnetic equation. Tha t  means that  the solving 
method must be improved by taking into account the 
turn currents equality, thus implying the non equality 
of the U voltage oil each turn in the electromagnetic 
equation. This is explained in the next section. 

_o.2A_ 
-0.3 

0 0.1 0.2 0.3 

Figure 3. Electromagnetic model geometry. 

0.4 

4 .4 .  F i r s t  s o l v i n g  s t e p  a n d  r e s u l t s  

Tile whole domain is meshed by several successive 
refining operat ions into t r iangular  meshes with the auto- 
adapt ive  mesh generator  until  there are about  two 
triangles in the skin depth  which is about  0.2 mm 
at the 114 kHz working frequency in the copper 
inductor  turns (more than  two triangles in tile skin 
depth  improves the results by only a few percent),  
thus giving a to ta l  amount  of about  40 000 triangles. 
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Figure 4. Turn currents calculated after first solution step. 
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4.5. Solving with currents equilibration 

The turn  currents equil ibration will be obtained by a 
custom wri t ten 'equi l ibrat ion '  function which performs 
successive i terat ive solutions with a numerical voltage 
adjus tment  on each turn  until  current equil ibration 
is obtained.  The s tar t ing solution corresponds to the 
former first solving step with the same U voltage 
(U = 70.6 V, ms) on each turn. The working flowchart 
of this equil ibration function corresponds to a Jacobi 
method and is outl ined in figure 5 with the following 
naming of the electrical parameters  related to the five 
turns which have sub-domain numbers 5, 6, 7, 8 and 10 
(in figure 4 above): 

Us, U6, UT, Us, Ulo: voltages at the ends of each 
turn; 

- /5, I6, I7, Is, I10: turn  currents; 
Zs, Z~, Z7, Zs, Z~o: impedance of each turn; 

starting Ao solution obtained after 
first state solving with: 

U 5 - U 6 - U 7 - U 8 - U I O = U  ( - 7 0 . 6 V ~ 0  

calculation of the current on each turn by integration 
of  the current density (each current depends on the 

corresponding  turn voltage) : 
15=f(U5); 16-f(U6); 17-f(U7); 18-f(U8); l lO-f(UlO) 

I 
calculation of  each turn impedance: 

Zh=U5/15; Z6-U6/16; Z7-U7/17; ZS-U8118; ZIO-UIO/IIO 

I 
calculation of the mean current: 

I~,~,=(15 +16+I7+18+110)/ 5 

I 
calculation of  the difference between l~a .  and 

each turn current : 
D 5 -  I ~ . .  - 15 
D 6 -  lm~.. - 16 
D7= 1 ~ .  - 17 
D8= 1~,.. - 18 

D / O -  I~,.. - I10 

I 
calculation of  the new turn voltages (relax is 
a relaxation coefficient whose  value is 10): 

Uf-Uh+Zh*Dh/relax 
U6-U6+Z6*D6/relax 
U7=U7+Z7*D7/relax 
U8-U8+ZS* D8/relax 

UlO=UIO+ZlO*D/O/relax 

I 
Solving and determinat ion of  the n e w  

Ao solution with the new turn voltages  
Uh,Ud,U7,U8,UIO 

I 

Figure 5. Flowchart of turn currents equilibration calculation. 

] - m e a n  : mean value of the turn  current; 

Ds, D6, DT, Ds, D,o: difference between /mean and 
each turn current (D~ = Im~n -- L with i = 5, 6, 7, 8, 
i0). 

Thus after less than 10 iterations,  the equil ibration of 
the turn currents is obtained with a set of turn  voltages 
which are no longer equal, as represented in figure 6. 
Effectively these voltages (with a major  real par t )  show a 
normal vertical symmet ry  and are greater in the middle 
(Ua = 77 V~m=) than  at the ends (Us = g~o - 64 Vrm=). 
This calculated electrical working corresponds now to 
the real inductor  working with the five turns connected 
in series. 

O? 

0.1 

O0 

.0.0 

-0 

43t 

O 0,05 0.1 0.15 0.2 0.25 0,3 09{5 0.4 

Figure 6. Turn currents and voltages obtained after current 
equilibration calculation. 

4.6. Solving and results 

After solving with current equilibration, some inter- 
esting results are obtained.  Firs t ,  figure 7 gives a sketch 
of the field lines, obta ined classically by drawing the 
lines of constant  value of the Ao module mult ipl ied by 
the z co-ordinate. 

Contour: x "abs(u) 

0.21 / f  .~. 

O 15 ~ /.S~.-y]_~C----.... ~ -. \ 

0.1 t !191: :: ,~ , \ ' 

-005  'x "--7,-.~:::'_.~2. ......... ,-" Y / 
'~. ",2"~.'.::-- ...... ~_---" / , / 

-015 "'? . . . . . . . .  f f  
0 005 01 015 02 0.25 03 

I 

o3~ o14 o.~ 

x 10 "~ [ I.~ 
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Figure 7. Magnetic field lines (obtained by drawing the ,40 
module multiplied by the z co-ordinate - values going from 0 
to 1.5.10 -~ Wb.m 1). 
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The calculated inductor  current module is 157 A .. . . .  
which is close to the measured current of 152 A ..... 
(table I1). By adding tile five calculated turn  voltages 
Us, Us, UT, Us and U~0, tile to ta l  inductor  voltage Ut is 
353 0.052 i (½m~) which is very close to the measured 
353 V~m~ (table I1). By dividing Ut by the inductor 
current,  the following values of the global resistance R 
and inductance L are obtained : 

- resistance: R = 113 m r /  

- inductance: L = 3.14 BH 

These values are also close to the measured values 
(table I, second line). 

The current densi ty dis t r ibut ion is also determined 
in each turn  and this gives interesting information about  
this real d is t r ibut ion which is given in module form in 
figure 8 on which tile x axis is the radial  direction and 
the y axis is the vertical axial direction. These axes are 
the same as those defined in section 4.2. It can be clearly 
seen tha t  the current densi ty exhibits a normal vertical 
symmet ry  (along Oy) and is contained all around each 
turn  in the electromagnetic  skin depth  which is small at 
tile 114 kHz working frequency (0.2 nnn) compared with 
the turn  diameter  (10 mm). These results are typical.  
But the addi t ional  interesting point  arising from this 
is the de terminat ion  of the current densi ty dis t r ibut ion 
around the turns cross section: it can be noted tha t  
the  major  par t  of tile current densi ty is located on the 
par t  of the turns per imeter  which faces the revolution 
axis, with a shifting toward the top for the upper  end 
turn 8 and toward tile bo t tom for the lower end turn 10. 
All these factors mean tha t  the inductor  corresponding 
resistance is always much stronger at these middle or 
high AC working frequencies than during DC when 
the current  densi ty is evenly dis t r ibuted in the cross 
section of each turn.  This effect is called the 'proximity  
effect' and is due to inductive interactions between all 

y (axial direction) 

o, ,L: 
o.o~ i~ ...... i ' ..... i : ' ~:. ' ,IF) 

o . o  

"" ~0.01.~ x (radial direction) 

F i g u r e  8.  Current  d e n s i t y  m o d u l e  in the  5 i n d u c t o r  turns .  

4 8 8  

of tile turns and between the turns and tile induced 
materials.  Consequently it is impor tant  to note tha t  
tile induced effects in tile induced materials,  such as 
tile crucible, are strongly dependent  oil this real non 
uniform inductor current density distr ibution,  which 
also has a considerable influence on later t empera ture  
determinat ion.  

Finally, from tile Ao solution obtained which is 
now deternfined in each electrical conducting nlaterial  
of tile s tudied domain, it is easy to deternfine tile 
corresponding Joule induced vohmle power density tp 
by the following expression: 

tO = cr ~ 2 A o A *o (12) 

This power density is calculated with a custom 
wri t ten function on a rectangular  grid which includes 
the induced materials,  i.e. the graphite  crucible and 
holder and the graphi te  foam, corresponding to the 2, 3 
and 4 sub-domain nmnbers (oil all tile grid nodes which 
do not belong to the induced materials,  k~ is forced 
to zero). This power density will be used as the heat 
source term of the thernlal  equation and is represented 
in figure 9 on which tile x axis is tile radial  direction and 
the y axis is the vertical axial direction. It can be noted 
tha t  the graphi te  crucible and holder and tile graphite  
foam couple on the magnetic field with a major  part  in 
the crucible which must be the case in order to achieve 
an efficient heating of tile SiC powder. 

By integrating the volunle power density k~ on the 
whole volume of tile graphite  crucible and holder and 
the graphite  foam the to ta l  induced power obtained is 
2 275 W. This is in good agreenlent with tile electrical 
measurements given in table H of § 3 corresponding to 
a Va = 2 kV anode DC voltage and a Ia = 2 A anode 
DC current oil tile tr iode generator. The related DC 
net power is equal to V~ I~, i.e. 4 000 W. After taking 
into account tile classical 70 to 75 % generator efficiency 
and tile 64 % inductor  coupling efficiency issuing from 
the measurements  given in table I (inductor alone 
and inductor  + furnace) tile remaining power direct ly 

crucible coupling 

-02 0 

Figure 9. Volume power density repartition. 
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injected into the induced mater ia ls  is about  2 000 W 
which is very close to the previously numerically 
calculated 2 275 W. 

So it may be concluded at this step tha t  the 
electromagnetic model gives results which are in good 
~greement with the experimental  measurements  and 
that  it is possible to go further by set t ing up the thermal  
model which will be coupled to the electromagnetic 
model by use of the previously calculated ~ volume 
power density as the heat  source. 

5. THE THERMAL MODEL 

As s ta ted  above in § 4.6, the induced volume power 
density k~ is calculated on a rectangular  grid including 
the induced materials  such as the graphi te  crucible, 
holder and foam. This calculation is made by a custom 
wri t ten function which extrapola tes  the Ao solution 
obtained after solving on this rectangular  grid and uses 
expression (12) to determine g, on each node (x~, y~) of 
this grid. The step of this grid is about  1 mm, which 
is obta ined with 40 points for the x, and 200 points 
for the y~, giving a to ta l  amount  of 8 000 points. This 
induced volume power density is the heat  source for 
heating the fl~rnace which is modelled by the thernml 
model which takes into account the graphi te  crucible, 
holder and foam. This thermal  model  is also set tip by 
using the Mat lab  finite elements solver for solving the 
thermal  equation as explained in the following steps. 

5.1. Properties of the materials 

The solid graphi te  crucible and holder have a 
good thermal  conduct ivi ty implying a relatively small 
t empera ture  gradient  inside them. Thus their thermal  
conductivity kg is constant  and equal to the value of the 
graphite  thermal  conduct ivi ty  at an es t imated mean 
tenlperature  of about  1500 °C, i.e. 53 W.In-~ .K -~. 
On the other hand, a strong tempera ture  gradient  is 
expected in the graphi te  insulating foam. The thermal  
conduct ivi ty kr of this foam is therefore chosen as a 
function of the t empera tu re  T, which is the following 
expression, according to the bibl iography [10]: 

ks = 0.17 10-6T 2 + 0.08 (W-m-~-K -~) (13) 

5.2. The thermal equation 

As the problem is axi-symmetric ,  a cylindrical co- 
ordinates system (r,O,z) is used as for the electro- 
magnetic problem. The t empera tu re  T is the scalar 
unknown. The ela~ssical t empera tu re  diffusion equation 

where k is the thermal  conduct ivi ty  and ~p is the right 
hand side volume power density giving the heat  source, 
is wri t ten a~s follows: 

- div ( k ~ T )  = ~ (14) 

By developing the divergence and gradient  operators  
and by mult iplying the two sides by the current radius 
r, this equation may be wri t ten as following: 

Or k r ~r - ~zz t,, ~z ] =got (15) 

The Mat lab  finite elements solver works only in a two- 
dimensional Cartesian co-ordinates system (xy). Thus 
in this Cartesian co-ordinates system and by assuming 
the correspondence between r and x and between z and 
y, the equation (15) may be wri t ten : 

3 ( O T )  3 ( k x O T ) = ¢ x  (16) 
Ox oy) 

Finally, by using the vector operators,  this local 
equation on each point (x,y) of the domain under 
consideration may be writ ten: 

- d i v ( k x ~ T )  = ~px (17) 

The equation (17) corresponds to the generic 
equation with the scalar unknown u suggested by the 
Mat lab  finite elements solver which is: 

- d i v ( c ~ u )  +au = f (18) 

Thus the coefficients of this equation must be entered 
for each sub-domain as follows: 

c = k x  (19) 

= 0 (~0)  

f = zpx (21) 

As previously s ta ted  the thermal  conduct ivi ty  k = kf  

of the graphite  foam is a flmction of the unknown 
temperature ,  which needs the use of the non linear 
solver. The right hand side of the equation f = ~x  is 
directly a custom wri t ten function which interpolates 
the former volume power density ~ obtained by 
solving the electromagnetic problem (§ 4.6) from the 
rectangular  grid (x~, y~) to each current point (x, y) and 
which multiplies this power density by the current x 
co-ordinate.  

5.3. The geometry and boundary 
conditions 

Tile geometry entered in tile Mat lab  finite elements 
solver is quite close to the real process geometry and is 
given in figure 10. Each sub-domain has a sub-domain 
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Figure 10. Thermal model geometry. 

distribution after first 

number indicated on this figure. They are listed as 
following: 

sub-domain 1: graphi te  crucible; 

sub-domain 2: graphi te  holder; 

- sub-domain 3: graphi te  foam. 

The set of boundary  conditions is the following: 

on faces EF  and GH: thermal  flux generalised 
Neumann boundary  conditions relative to convection 
losses expressed by - k ~ '  gra---d T = h (T - T~mb) with 
a convection coefficient h = 5 W . m - 2 . K  -~ and an 
es t imated ambient  t empera tu re  ramb ~ -  773 K (500 °C) 
( 7  is the normal  vector on tile boundary);  

on face FG: fixed t empera tu re  Dirichlet boundary  
conditions; this t empera tu re  is es t imated at 773 K 
(500 °C); 

- all the other  faces are insulated (no losses) which is 
expressed by a zero thermal  flux generalised Neumann 
boundary  condition. As previously s ta ted  the SiC 
powder has been removed for simplification, which 
means tha t  tile surface of tile graphi te  crucible internal 
chamber  is considered as a boundary.  

5.4 .  S o l v i n g  a n d  r e s u l t s  

After meshing tile three sub-domains with the auto- 
adapt ive  mesh generator  of the Mat lab  finite elements 
solver, a first solving of the thermal  equation is done 
and gives the t empera tu re  dis t r ibut ion as indicated in 
figure 11. In this figure, it can be noted that  the major  
par t  of the t empera tu re  gradient  is in the graphi te  
insulat ing foam and tha t  the t empera tu re  gradient  in 
the graphi te  crucible is low with a mean value of the 
t empera tu re  of about  1 600 °C, the lower par t  being 
slightly hot ter  than  the upper  part .  Tile corresponding 
tempera tures  TA, TB, Tc and TD of tile 4 specific points 

4 9 0  
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Figure 1 1. Calculated temperature 
solution. 

A, B, C and D of figure 10 are indicated in figure 11 
and are tile following: TA = 1 548 °C, TB = 1 710 °C, 
Tc = 1 548 °C, TD = 1 713 °C. The tempera ture  at 
points A and B have also been measured (see section 3, 
first line of table II1), showing tha t  the calculated values 
TA and TB are close to the measured ones with less than 
10 % error but  with an inverted gradient between A and 
B. It  is clear tha t  these differences depend on the choice 
of the boundary  conditions set of the thermal  problem. 

In order to improve the accuracy of the results, a 
second solving is done by adding to the former bound- 
ary conditions set a radiat ive thermal  flux generalised 
Neumann boundary  condition on the horizontal faces 
of the crucible internal chamber (which was insulated 
for the first solution) corresponding to the couples 
of faces (CO, PQ) and (DR, ST) which face each 
other as indicated ill figure 10. This addi t ional  Neu- 
mann boundary  condit ion is expressed as - k  ~ gra-~T 
= e O'st (T 4 --Tffef) in which e is tile emissivity (equal to 1 
for the graphite),  ast is tile Stefan-Boltzmann constant  
and Tref is the reference tempera ture  on which the con- 
sidered face radiates.  The reference tempera ture  of the 
radiat ive losses of the couple (CO, PQ) is assumed to 
be the previously calculated average tempera ture  (ob- 
ta ined by the first solution) of the other couple (DR, 
ST) and reciprocally. This is easily done by entering 
this addit ional  boundary  condition in tile Mat lab  solver 
on the boundaries corresponding to the couples of faces 
(CO, PQ) and (DR, ST). This must be considered as 
a simplified manner  of taking into account the 'face to 
face' radiat ion losses which exist in the internal chamber 
of the graphi te  crucible. The results of this second solu- 
tion are given in figure 12 on which the corresponding 
tempera ture  Ta, TB, Tc and TD of the 4 specific points 
A, B, C and D of figure 10 are indicated. They are the 
following: TA = 1 706 °C, TB = 1 573 °C, Tc = 1 713 °C, 
TD = 1 554 °C. It  can be noted that  the two calculated 
tempera tures  TA and TB are quite close to the measured 
tempera tures  (see first line of table III) with the right 
gradient  this time. 

Thus the thermal  model  is in good agreement 
with the measurements and the global electromagnetic- 
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thermal  model can be considered as a design and 
opt imisat ion tool for this kind of inductive process. 
It must be noted tha t  exact matching between this 
kind of modelling and the real device is quite difficult 
to obtain because some da ta  such as, for instance, the 
thermal  boundary  conditions, are difficult to evaluate. 
Therefore this kind of design tool is inainly of interest 
for s tudying the relative behaviour variations due to the 
different pa ramete r  variations. 

6. CONCLUSION 

Tile work presented in this paper  is related to 
the applicat ion of a two-dimensional electromagnetic- 
thermal  coupling nlodel set up with the Mat lab  finite 
elements solver for the opt imisat ion of a single SiC 
crystal  inductive e laborat ion process. The SiC crystal  
is obta ined in a graphi te  crucible which is heated by 
induction, after sublimation of the SiC s tar t ing powder 
and condensat ion on the upper  face of the crucible. This 
opt imisat ion tool is mainly focused on tile 'macroscopic '  
electrical and thermal  engineering aspects.  

The electromagnetic model  using an equation derived 
from the Maxwell equations and Ohln's  law with 
an imposed inductor  voltage gives all the electrical 
parameters ,  i.e. the resistance, the inductance and 
the coupling efficiency of the inductive system. These 
t)arameters are in good agreement with the measured 
values. The real inductor  current densi ty dis t r ibut ion 
is also obtained,  showing an uneven dis t r ibut ion with 
a shift toward the inner faces of the turns. It nmst 
be noted tha t  taking into account this real inductor  
current density, called proximity effects, is impor tant  
for the accuracy of the induced effects in the different 
coupling materials  such as the graphi te  crucible and the 
graphite insulating foam. Final ly  this model gives the 
power density dis t r ibut ion in these coupling materials.  
This power density dis t r ibut ion is then used as the heat  
source to achieve the coupling with the thernlal  nlodel. 

The thermal  model  is also solved with the Mat lab  
finite elements solver with an appropr ia te  boundary  
conditions set including both fixed tempera ture  and 
therinal  flux conditions. This requires the use of the 
non linear solver, par t icular ly  because the insulating 
foam thermal  conduct ivi ty is chosen as a function of the 
temperature .  The tempera ture  dis t r ibut ion obtained in 
the coupling mater ia ls  such as the graphite  crucible is 
in good agreement with the measured values. 

In conclusion, it can be said tha t  the mathemat ica l  
and graphical  efficiency of Mat lab  associated with its 
finite elements solver can be considered as a new 
and original global electrical and thermal  opt imisat ion 
tool which is quite easy to inanage for the design 
or opt imisat ion of middle or high frequency inductive 
industr ial  processes. The main inconvenience of this tool 
is that ,  compared with other finite elements solvers, it 

is used as a ~closed box'  and so it does not allow tlle 
user to control how it works internally from a numerical 
point of view. But it nmst be accepted that .  thanks to 
the Windows (and also Unix) working environment,  it 
is quite convenient to use for researchers or engineers 
and, according to tile results presented in this paper,  
gives good precision for the opt imisat ion of induction 
processes. 

Color u-273 
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Figure 12. Calculated temperature distribution after second 
solution. 
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